Bruchstelle verlangsamt Blutzucker-Stoffwechsel
(5. August 2020) - Nachzuckern? Immer mit der Ruhe! Die Steuerung des Blutzuckerspiegels geht an einer entscheidenden Schaltstelle langsamer vor sich als vergleichbare hormonelle Vorgänge. Das ergibt sich aus der Struktur und Funktion des Rezeptors, der auf die Ausschüttung des Hormons Glucagon reagiert – er übersetzt diese in eine zelluläre Antwort, die zu einem Anstieg des Blutzuckerspiegels führt, aber mit Verzögerung.
Ein internationales Forschungsteam um den Marburger Biologen Dr. Daniel Hilger hat den Rezeptor genau unter die Lupe genommen; es berichtet im Wissenschaftsmagazin „Science“ über seine Ergebnisse.
Das Hormon Glucagon steuert den Blutzuckerspiegel, der krankhaftes Übergewicht und Diabetes beeinflusst. Schüttet die Bauchspeicheldrüse das Hormon aus, so führt dies über eine komplizierte Abfolge molekularer Wechselwirkungen dazu, dass Zucker freigesetzt wird. Zu Beginn steht dabei die Kopplung von Glucagon an seinen Rezeptor, der in der Zellmembran verankert ist.
„Wegen seiner grundlegenden Rolle beim Glukose-Stoffwechsel bietet sich der Rezeptor als Ziel für die Behandlung von Patienten an, die an Diabetes oder krankhaftem Übergewicht leiden“, sagt Daniel Hilger, der maßgeblich an der Forschungsarbeit mitwirkte.
Sobald Glucagon auf der Zelloberfläche an den Rezeptor koppelt, stößt dieser im Zellinneren eine Kaskade von Reaktionen an, die schließlich eine erhöhte Zuckerabgabe ins Blut zur Folge hat. Der kettenförmige Rezeptor besitzt 7 Transmembrandomänen, die die Zellmembran durchlaufen um den Rezeptor in dieser zu verankern.
Das kettenförmige Rezeptormolekül ist in eine Vielzahl von Schlaufen gelegt, die den Rezeptor in der Zellmembran verankern. Die Wissenschaftlerinnen und Wissenschaftler um Hilger klärten die Struktur des Rezeptors mittels Kryo-Elektronenmikroskopie auf, bei der die Moleküle stark gekühlt werden.
„Wir haben ein künstliches Glucagonmolekül mit verbesserter Löslichkeit hergestellt, das wir in Komplex mit dem Rezeptor untersuchten“, erklärt Hilger, der diese Forschungsarbeiten noch in seiner Zeit an der Stanford Universität in den USA durchführte.